Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 1): 131427, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583833

RESUMO

Due to the health emergency created by SARS-CoV-2, the virus that causes the COVID-19 disease, the rapid implementation of a new vaccine technology was necessary. mRNA vaccines, being one of the cutting-edge new technologies, attracted significant interest and offered a lot of hope. The potential of these vaccines in preventing admission to hospitals and serious illness in people with comorbidities has recently been called into question due to the vaccines' rapidly waning immunity. Mounting evidence indicates that these vaccines, like many others, do not generate sterilizing immunity, leaving people vulnerable to recurrent infections. Additionally, it has been discovered that the mRNA vaccines inhibit essential immunological pathways, thus impairing early interferon signaling. Within the framework of COVID-19 vaccination, this inhibition ensures an appropriate spike protein synthesis and a reduced immune activation. Evidence is provided that adding 100 % of N1-methyl-pseudouridine (m1Ψ) to the mRNA vaccine in a melanoma model stimulated cancer growth and metastasis, while non-modified mRNA vaccines induced opposite results, thus suggesting that COVID-19 mRNA vaccines could aid cancer development. Based on this compelling evidence, we suggest that future clinical trials for cancers or infectious diseases should not use mRNA vaccines with a 100 % m1Ψ modification, but rather ones with the lower percentage of m1Ψ modification to avoid immune suppression.


Assuntos
COVID-19 , Neoplasias , Pseudouridina , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Neoplasias/imunologia , Pseudouridina/metabolismo , Vacinas contra COVID-19/imunologia , Animais , Vacinas de mRNA , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Pneumonia Viral/prevenção & controle , Betacoronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia
2.
Biomedicines ; 12(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38672267

RESUMO

BACKGROUND: Post-acute sequelae of SARS-CoV-2 infection (PASC) is a complicated disease that affects millions of people all over the world. Previous studies have shown that PASC impacts 10% of SARS-CoV-2 infected patients of which 50-70% are hospitalised. It has also been shown that 10-12% of those vaccinated against COVID-19 were affected by PASC and its complications. The severity and the later development of PASC symptoms are positively associated with the early intensity of the infection. RESULTS: The generated health complications caused by PASC involve a vast variety of organ systems. Patients affected by PASC have been diagnosed with neuropsychiatric and neurological symptoms. The cardiovascular system also has been involved and several diseases such as myocarditis, pericarditis, and coronary artery diseases were reported. Chronic hematological problems such as thrombotic endothelialitis and hypercoagulability were described as conditions that could increase the risk of clotting disorders and coagulopathy in PASC patients. Chest pain, breathlessness, and cough in PASC patients were associated with the respiratory system in long-COVID causing respiratory distress syndrome. The observed immune complications were notable, involving several diseases. The renal system also was impacted, which resulted in raising the risk of diseases such as thrombotic issues, fibrosis, and sepsis. Endocrine gland malfunction can lead to diabetes, thyroiditis, and male infertility. Symptoms such as diarrhea, nausea, loss of appetite, and taste were also among reported observations due to several gastrointestinal disorders. Skin abnormalities might be an indication of infection and long-term implications such as persistent cutaneous complaints linked to PASC. CONCLUSIONS: Long-COVID is a multidimensional syndrome with considerable public health implications, affecting several physiological systems and demanding thorough medical therapy, and more study to address its underlying causes and long-term effects is needed.

3.
J Cell Biochem ; 125(3): e30530, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349116

RESUMO

When the SARS-CoV-2 virus infects humans, it leads to a condition called COVID-19 that has a wide spectrum of clinical manifestations, from no symptoms to acute respiratory distress syndrome. The virus initiates damage by attaching to the ACE-2 protein on the surface of endothelial cells that line the blood vessels and using these cells as hosts for replication. Reactive oxygen species levels are increased during viral replication, which leads to oxidative stress. About three-fifths (~60%) of the people who get infected with the virus eradicate it from their body after 28 days and recover their normal activity. However, a large fraction (~40%) of the people who are infected with the virus suffer from various symptoms (anosmia and/or ageusia, fatigue, cough, myalgia, cognitive impairment, insomnia, dyspnea, and tachycardia) beyond 12 weeks and are diagnosed with a syndrome called long COVID. Long-term clinical studies in a group of people who contracted SARS-CoV-2 have been contrasted with a noninfected matched group of people. A subset of infected people can be distinguished by a set of cytokine markers to have persistent, low-grade inflammation and often self-report two or more bothersome symptoms. No medication can alleviate their symptoms efficiently. Coronavirus nucleocapsid proteins have been investigated extensively as potential drug targets due to their key roles in virus replication, among which is their ability to bind their respective genomic RNAs for incorporation into emerging virions. This review highlights basic studies of the nucleocapsid protein and its ability to undergo liquid-liquid phase separation. We hypothesize that this ability of the nucleocapsid protein for phase separation may contribute to long COVID. This hypothesis unlocks new investigation angles and could potentially open novel avenues for a better understanding of long COVID and treating this condition.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Proteínas do Nucleocapsídeo de Coronavírus , Células Endoteliais , Separação de Fases , Proteínas do Nucleocapsídeo
4.
Vaccine ; 42(3): 426-440, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38158298

RESUMO

Contrary to the long-held belief that the effects of vaccines are specific for the disease they were created; compelling evidence has demonstrated that vaccines can exert positive or deleterious non-specific effects (NSEs). In this review, we compiled research reports from the last 40 years, which were found based on the PubMed search for the epidemiological and immunological studies on the non-specific effects (NSEs) of the most common human vaccines. Analysis of information showed that live vaccines induce positive NSEs, whereas non-live vaccines induce several negative NSEs, including increased female mortality associated with enhanced susceptibility to other infectious diseases, especially in developing countries. These negative NSEs are determined by the vaccination sequence, the antigen concentration in vaccines, the type of vaccine used (live vs. non-live), and also by repeated vaccination. We do not recommend stopping using non-live vaccines, as they have demonstrated to protect against their target disease, so the suggestion is that their detrimental NSEs can be minimized simply by changing the current vaccination sequence. High IgG4 antibody levels generated in response to repeated inoculation with mRNA COVID-19 vaccines could be associated with a higher mortality rate from unrelated diseases and infections by suppressing the immune system. Since most COVID-19 vaccinated countries are reporting high percentages of excess mortality not directly attributable to deaths from such disease, the NSEs of mRNA vaccines on overall mortality should be studied in depth.


Assuntos
COVID-19 , Vacinas , Feminino , Humanos , Vacinas contra COVID-19 , Vacinação , COVID-19/prevenção & controle
5.
J Cell Biochem ; 124(10): 1466-1485, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37801299

RESUMO

With the decline in the number of new Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections, the World Health Organization announced the end of the SARS-CoV-2 pandemic. However, the repercussions of this viral pandemic may remain with us for a longer period of time, as it has remodeled the lives of humankind in many ways, including social and economic. Of course, its most important repercussions remain on the human health level. Long-coronavirus disease (COVID) or post-COVID is a state for which we do not have a concrete definition, a specific international classification of diseases Code, clear diagnostic tools, or well-known effective cures as of yet. In this second article from the Intrinsic Factors behind long-COVID Series, we try to link long-COVID symptoms with their causes, starting from the nervous system. Extracellular vesicles (ECVs) play very complex and ramified roles in the bodies of both healthy and not-healthy individuals. ECVs may facilitate the entry of many bioactive molecules and pathogens into the tissues and cells of the nervous system across the blood-brain barrier. Based on the size, quantity, and quality of their cargo, ECVs are directly proportional to the pathological condition and its severity through intertwined mechanisms that evoke inflammatory immune responses typically accompanied by pathological symptoms over variable time periods according to the type of these symptoms.


Assuntos
COVID-19 , Vesículas Extracelulares , Doenças do Sistema Nervoso , Humanos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/etiologia
6.
Biomolecules ; 13(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37759738

RESUMO

SARS-CoV-2, the virus that causes the COVID-19 disease, has been shown to cause immune suppression in certain individuals. This can manifest as a reduced ability of the host's immune system to effectively control the infection. Studies have reported that patients with COVID-19 can exhibit a decline in white blood cell counts, including natural killer cells and T cells, which are integral components of the immune system's response to viral pathogens. These cells play critical roles in the immune response to viral infections, and their depletion can make it harder for the body to mount an effective defense against the virus. Additionally, the virus can also directly infect immune cells, further compromising their ability to function. Some individuals with severe COVID-19 pneumonia may develop a "cytokine storm", an overactive immune response that may result in tissue damage and organ malfunction. The underlying mechanisms of immune suppression in SARS-CoV-2 are not entirely understood at this time, and research is being conducted to gain a more comprehensive understanding. Research has shown that severe SARS-CoV-2 infection promotes the synthesis of IgG4 antibodies. In this study, we propose the hypothesis that IgG4 antibodies produced by B cells in response to infection by SARS-CoV-2 generate immunological tolerance, which prevents its elimination and leads to persistent and chronic infection. In summary, we believe that this constitutes another immune evasion mechanism that bears striking similarities to that developed by cancer cells to evade immune surveillance.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Imunoglobulina G , Linfócitos T , Células Matadoras Naturais
7.
Vaccines (Basel) ; 11(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37243095

RESUMO

Less than a year after the global emergence of the coronavirus SARS-CoV-2, a novel vaccine platform based on mRNA technology was introduced to the market. Globally, around 13.38 billion COVID-19 vaccine doses of diverse platforms have been administered. To date, 72.3% of the total population has been injected at least once with a COVID-19 vaccine. As the immunity provided by these vaccines rapidly wanes, their ability to prevent hospitalization and severe disease in individuals with comorbidities has recently been questioned, and increasing evidence has shown that, as with many other vaccines, they do not produce sterilizing immunity, allowing people to suffer frequent re-infections. Additionally, recent investigations have found abnormally high levels of IgG4 in people who were administered two or more injections of the mRNA vaccines. HIV, Malaria, and Pertussis vaccines have also been reported to induce higher-than-normal IgG4 synthesis. Overall, there are three critical factors determining the class switch to IgG4 antibodies: excessive antigen concentration, repeated vaccination, and the type of vaccine used. It has been suggested that an increase in IgG4 levels could have a protecting role by preventing immune over-activation, similar to that occurring during successful allergen-specific immunotherapy by inhibiting IgE-induced effects. However, emerging evidence suggests that the reported increase in IgG4 levels detected after repeated vaccination with the mRNA vaccines may not be a protective mechanism; rather, it constitutes an immune tolerance mechanism to the spike protein that could promote unopposed SARS-CoV2 infection and replication by suppressing natural antiviral responses. Increased IgG4 synthesis due to repeated mRNA vaccination with high antigen concentrations may also cause autoimmune diseases, and promote cancer growth and autoimmune myocarditis in susceptible individuals.

8.
J Cell Biochem ; 124(5): 656-673, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37126363

RESUMO

It can be argued that the severity of COVID-19 has decreased in many countries. This could be a result of the broad coverage of the population by vaccination campaigns, which often reached an almost compulsory status in many places. Furthermore, significant roles were played by the multiple mutations in the body of the virus, which led to the emergence of several new SARS-CoV-2 variants with enhanced infectivity but dramatically reduced pathogenicity. However, the challenges associated with the development of various side effects and their persistence for long periods exceeding 20 months as a result of the SARS-CoV-2 infection, or taking available vaccines against it, are spreading horizontally and vertically in number and repercussions. For example, the World Health Organization announced that there are more than 17 million registered cases of long-COVID (also known as post-COVID syndrome) in the European Union countries alone. Furthermore, by using the PubMed search engine, one can find that more than 10 000 articles have been published focusing exclusively on long-COVID. In light of these enormous and ever-increasing numbers of cases and published articles, most of which are descriptive of the various long-COVID symptoms, the need to know the reasons behind this phenomenon raises several important questions. Is long-COVID caused by the continued presence of the virus or one/several of its components in the recovering individual body for long periods of time, which urges the body to respond in a way that leads to long-COVID development? Or are there some latent and limited reasons related to the recovering patients themselves? Or is it a sum of both? Many observations support a positive answer to the first question, whereas others back the second question but typically without releasing a fundamental reason/signal behind it. Whatever the answer is, it seems that the real reasons behind this widespread phenomenon remain unclear. This report opens a series of articles, in which we will try to shed light on the underlying causes that could be behind the long-COVID phenomenon.


Assuntos
COVID-19 , Vesículas Extracelulares , Humanos , SARS-CoV-2 , COVID-19/epidemiologia , Síndrome de COVID-19 Pós-Aguda , Prevalência
10.
Toxics ; 10(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36136483

RESUMO

Autism spectrum disorder (ASD), schizophrenia, and bipolar disorder are genetically complex and heterogeneous neurodevelopmental disorders (NDDs) resulting from genetic factors and gene-environment (GxE) interactions for which onset occurs in early brain development. Recent progress highlights the link between ASD and (i) immunogenetics, neurodevelopment, and inflammation, and (ii) impairments of autophagy, a crucial neurodevelopmental process involved in synaptic pruning. Among various environmental factors causing risk for ASD, aluminum (Al)-containing vaccines injected during critical periods have received special attention and triggered relevant scientific questions. The aim of this review is to discuss the current knowledge on the role of early inflammation, immune and autophagy dysfunction in ASD as well as preclinical studies which question Al adjuvant impacts on brain and immune maturation. We highlight the most recent breakthroughs and the lack of epidemiological, pharmacokinetic and pharmacodynamic data constituting a "scientific gap". We propose additional research, such as genetic studies that could contribute to identify populations at genetic risk, improving diagnosis, and potentially the development of new therapeutic tools.

11.
Biomedicines ; 10(6)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35740361

RESUMO

Viruses and their hosts have coevolved for a long time. This coevolution places both the pathogen and the human immune system under selective pressure; on the one hand, the immune system has evolved to combat viruses and virally infected cells, while viruses have developed sophisticated mechanisms to escape recognition and destruction by the immune system. SARS-CoV-2, the pathogen that is causing the current COVID-19 pandemic, has shown a remarkable ability to escape antibody neutralization, putting vaccine efficacy at risk. One of the virus's immune evasion strategies is mitochondrial sabotage: by causing reactive oxygen species (ROS) production, mitochondrial physiology is impaired, and the interferon antiviral response is suppressed. Seminal studies have identified an intra-cytoplasmatic pathway for viral infection, which occurs through the construction of tunneling nanotubes (TNTs), hence enhancing infection and avoiding immune surveillance. Another method of evading immune monitoring is the disruption of the antigen presentation. In this scenario, SARS-CoV-2 infection reduces MHC-I molecule expression: SARS-CoV-2's open reading frames (ORF 6 and ORF 8) produce viral proteins that specifically downregulate MHC-I molecules. All of these strategies are also exploited by other viruses to elude immune detection and should be studied in depth to improve the effectiveness of future antiviral treatments. Compared to the Wuhan strain or the Delta variant, Omicron has developed mutations that have impaired its ability to generate syncytia, thus reducing its pathogenicity. Conversely, other mutations have allowed it to escape antibody neutralization and preventing cellular immune recognition, making it the most contagious and evasive variant to date.

12.
Eur J Clin Invest ; 48(5): e12920, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29574698

RESUMO

A generally undesired effect of cannabis smoking is a reversible disruption of short-term memory induced by delta-9-tetrahydrocannabinol (THC), the primary psychoactive component of cannabis. However, this paradigm has been recently challenged by a group of scientists who have shown that THC is also able to improve neurological function in old animals when chronically administered at low concentrations. Moreover, recent studies demonstrated that THC paradoxically promotes hippocampal neurogenesis, prevents neurodegenerative processes occurring in animal models of Alzheimer's disease, protects from inflammation-induced cognitive damage and restores memory and cognitive function in old mice. With the aim to reconcile these seemingly contradictory facts, this work will show that such paradox can be explained within the framework of hormesis, defined as a biphasic dose-response.


Assuntos
Transtornos Cognitivos/induzido quimicamente , Cognição/efeitos dos fármacos , Dronabinol/efeitos adversos , Transtornos da Memória/induzido quimicamente , Memória de Curto Prazo/efeitos dos fármacos , Fatores Etários , Doença de Alzheimer/prevenção & controle , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hipocampo/metabolismo , Humanos , Fumar Maconha/efeitos adversos , Fumar Maconha/fisiopatologia , Neurogênese/efeitos dos fármacos , Nootrópicos/farmacologia , Receptor CB1 de Canabinoide/metabolismo
13.
Rev Neurosci ; 27(6): 599-622, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27096778

RESUMO

Experimental evidence has demonstrated that glutamate is an essential factor for neurogenesis, whereas another line of research postulates that excessive glutamatergic neurotransmission is associated with the pathogenesis of depression. The present review shows that such paradox can be explained within the framework of hormesis, defined as biphasic dose responses. Low glutamate levels activate adaptive stress responses that include proteins that protect neurons against more severe stress. Conversely, abnormally high levels of glutamate, resulting from increased release and/or decreased removal, cause neuronal atrophy and depression. The dysregulation of the glutamatergic transmission in depression could be underlined by several factors including a decreased inhibition (γ-aminobutyric acid or serotonin) or an increased excitation (primarily within the glutamatergic system). Experimental evidence shows that the activation of N-methyl-D-aspartate receptor (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPAR) can exert two opposite effects on neurogenesis and neuron survival depending on the synaptic or extrasynaptic concentration. Chronic stress, which usually underlies experimental and clinical depression, enhances glutamate release. This overactivates NMDA receptors (NMDAR) and consequently impairs AMPAR activity. Various studies show that treatment with antidepressants decreases plasma glutamate levels in depressed individuals and regulates glutamate receptors by reducing NMDAR function by decreasing the expression of its subunits and by potentiating AMPAR-mediated transmission. Additionally, it has been shown that chronic treatment with antidepressants having divergent mechanisms of action (including tricyclics, selective serotonin reuptake inhibitors, and ketamine) markedly reduced depolarization-evoked glutamate release in the hippocampus. These data, taken together, suggest that the glutamatergic system could be a final common pathway for antidepressant treatments.


Assuntos
Ácido Glutâmico/metabolismo , Ácido Glutâmico/toxicidade , Neurogênese/efeitos dos fármacos , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Depressão/metabolismo , Humanos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
14.
Nat Rev Urol ; 11(9): 531-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25112854

RESUMO

The search for the legendary, highly erogenous vaginal region, the Gräfenberg spot (G-spot), has produced important data, substantially improving understanding of the complex anatomy and physiology of sexual responses in women. Modern imaging techniques have enabled visualization of dynamic interactions of female genitals during self-sexual stimulation or coitus. Although no single structure consistent with a distinct G-spot has been identified, the vagina is not a passive organ but a highly dynamic structure with an active role in sexual arousal and intercourse. The anatomical relationships and dynamic interactions between the clitoris, urethra, and anterior vaginal wall have led to the concept of a clitourethrovaginal (CUV) complex, defining a variable, multifaceted morphofunctional area that, when properly stimulated during penetration, could induce orgasmic responses. Knowledge of the anatomy and physiology of the CUV complex might help to avoid damage to its neural, muscular, and vascular components during urological and gynaecological surgical procedures.


Assuntos
Clitóris/fisiologia , Orgasmo/fisiologia , Uretra/fisiologia , Vagina/fisiologia , Feminino , Humanos
15.
J Sex Med ; 9(4): 956-65, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22462587

RESUMO

INTRODUCTION: There is general agreement that it is possible to have an orgasm thru the direct simulation of the external clitoris. In contrast, the possibility of achieving climax during penetration has been controversial. METHODS: Six scientists with different experimental evidence debate the existence of the vaginally activated orgasm (VAO). MAIN OUTCOME MEASURE: To give reader of The Journal of Sexual Medicine sufficient data to form her/his own opinion on an important topic of female sexuality. RESULTS: Expert #1, the Controversy's section Editor, together with Expert #2, reviewed data from the literature demonstrating the anatomical possibility for the VAO. Expert #3 presents validating women's reports of pleasurable sexual responses and adaptive significance of the VAO. Echographic dynamic evidence induced Expert # 4 to describe one single orgasm, obtained from stimulation of either the external or internal clitoris, during penetration. Expert #5 reviewed his elegant experiments showing the uniquely different sensory responses to clitoral, vaginal, and cervical stimulation. Finally, the last Expert presented findings on the psychological scenario behind VAO. CONCLUSION: The assumption that women may experience only the clitoral, external orgasm is not based on the best available scientific evidence.


Assuntos
Orgasmo/fisiologia , Nível de Alerta/fisiologia , Colo do Útero/inervação , Colo do Útero/fisiologia , Clitóris/inervação , Clitóris/fisiologia , Emoções , Feminino , Humanos , Fibras Nervosas/fisiologia , Mamilos/inervação , Apego ao Objeto , Estimulação Física , Córtex Somatossensorial/fisiologia , Vagina/inervação , Vagina/fisiologia
16.
J Sex Med ; 8(12): 3500-4, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21995650

RESUMO

INTRODUCTION: Although there are historical records showing its existence for over 2,000 years, the so-called female ejaculation is still a controversial phenomenon. A shared paradigm has been created that includes any fluid expulsion during sexual activities with the name of "female ejaculation." AIM: To demonstrate that the "real" female ejaculation and the "squirting or gushing" are two different phenomena. METHODS: Biochemical studies on female fluids expelled during orgasm. RESULTS: In this case report, we provided new biochemical evidences demonstrating that the clear and abundant fluid that is ejected in gushes (squirting) is different from the real female ejaculation. While the first has the features of diluted urines (density: 1,001.67 ± 2.89; urea: 417.0 ± 42.88 mg/dL; creatinine: 21.37 ± 4.16 mg/dL; uric acid: 10.37 ± 1.48 mg/dL), the second is biochemically comparable to some components of male semen (prostate-specific antigen: 3.99 ± 0.60 × 103 ng/mL). CONCLUSIONS: Female ejaculation and squirting/gushing are two different phenomena. The organs and the mechanisms that produce them are bona fide different. The real female ejaculation is the release of a very scanty, thick, and whitish fluid from the female prostate, while the squirting is the expulsion of a diluted fluid from the urinary bladder.


Assuntos
Ejaculação/fisiologia , Orgasmo/fisiologia , Sexualidade , Uretra/fisiologia , Vagina/fisiologia , Adulto , Creatinina , Feminino , Indicadores Básicos de Saúde , Humanos , Antígeno Prostático Específico , Ureia , Ácido Úrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...